Counterexamples to inverse problems for the wave equation
نویسندگان
چکیده
<p style='text-indent:20px;'>We construct counterexamples to inverse problems for the wave operator on domains in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^{n+1} $\end{document}</tex-math></inline-formula>, id="M2">\begin{document}$ n \ge 2 and Lorentzian manifolds. We show that non-isometric metrics can lead same partial data measurements, which are formulated terms certain restrictions of Dirichlet-to-Neumann map. The giving time-dependent, but they smooth non-degenerate. On id="M3">\begin{document}$ $\end{document}</tex-math></inline-formula> conformal Minkowski metric.</p>
منابع مشابه
Counterexamples to Strichartz estimates for the wave equation in domains
Let Ω be the upper half plane {(x, y) ∈ R, x > 0, y ∈ R}. Define the Laplacian on Ω to be ∆D = ∂ 2 x + (1 + x)∂ 2 y , together with Dirichlet boundary conditions on ∂Ω: one may easily see that Ω, with the metric inherited from ∆D, is a strictly convex domain. We shall prove that, in such a domain Ω, Strichartz estimates for the wave equation suffer losses when compared to the usual case Ω = R, ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولCounterexamples to the Strichartz inequalities for the wave equation in domains II
In this paper we consider a smooth and bounded domain Ω ⊂ Rd of dimension d ≥ 2 with smooth boundary ∂Ω and we construct sequences of solutions to the wave equation with Dirichlet boundary conditions which contradict the Strichartz estimates of the free space, providing losses of derivatives at least for a subset of the usual range of indices. This is due to micro-local phenomena such as causti...
متن کاملCounterexamples to Strichartz inequalities for the wave equation in domains II
1 Introduction Let Ω be a smooth manifold of dimension d ≥ 2 with C ∞ boundary ∂Ω, equipped with a Riemannian metric g. Let ∆ g be the Laplace-Beltrami operator associated to g on Ω, acting on L 2 (Ω) with Dirichlet boundary condition. Let 0 < T < ∞ and consider the wave equation with Dirichlet boundary conditions: (∂ 2 t − ∆ g)u = 0 on Ω × [0, T ], u| t=0 = u 0 , ∂ t u| t=0 = u 1 , u| ∂Ω...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems and Imaging
سال: 2022
ISSN: ['1930-8345', '1930-8337']
DOI: https://doi.org/10.3934/ipi.2021058